Let's use the Newton-Raphson method for finding the root of an equation to write a function that can compute the square root of a number.
To make a generator that generates successive approximations let’s start by assuming an initial approximation and then derive the function that computes the next approximation:
a F
---------
a'
This is the equation for computing the next approximate value of the square root:
$a_{i+1} = \frac{(a_i+\frac{n}{a_i})}{2}$
Starting with $\frac{(a_i+\frac{n}{a_i})}{2}$ we can derive the Joy expression to compute it using abstract dummy variables to stand in for actual values. First undivide by two:
$(a_i+\frac{n}{a_i})$ 2 /
Then unadd terms:
$a_i$ $\frac{n}{a_i}$ + 2 /
Undivide again:
$a_i$ $n$ $a_i$ / + 2 /
Finally deduplicate the $a_i$ term:
$a_i$ $n$ over / + 2 /
Let's try out this function over / + 2 /
on an example:
F == over / + 2 /
[F over / + 2 /] inscribe
In order to use this function F
we have to provide an initial estimate for the value of the square root, and we want to keep the input value n
handy for iterations (we don't want the user to have to keep reentering it.)
clear
5 36 [F] trace
The initial estimate can be 2, and we can cons
the input value onto a quote with F
:
[F1 2 swap [F] cons] inscribe
clear
36 [F1] trace
trace
36 F
clear
36 F1 make_generator
x x x first
144 F1 make_generator x x x x first
clear
2 [36 F]
[first] [pop sqr] fork - abs 3 <
pop i
[36 F] [first] [pop sqr] fork - abs 3 <
pop i
[36 F] [first] [pop sqr] fork - abs 3 <
clear
2
[] true [i [36 F] [first] [pop sqr] fork - abs 3 >] loop pop
clear
7 [] true [i [144 F] [first] [pop sqr] fork - abs 3 >] loop pop
clear
7 [] true [i [14400 F] [first] [pop sqr] fork - abs 3 >] loop pop
broken due to no float div
clear
7 [] true [i [1000 F] [first] [pop sqr] fork - abs 10 >] loop pop
Our generator would be created by:
a [dup F] make_generator
With n as part of the function F, but n is the input to the sqrt function we’re writing. If we let 1 be the initial approximation:
1 n 1 / + 2 /
1 n/1 + 2 /
1 n + 2 /
n+1 2 /
(n+1)/2
The generator can be written as:
23 1 swap [over / + 2 /] cons [dup] swoncat make_generator
1 23 [over / + 2 /] cons [dup] swoncat make_generator
1 [23 over / + 2 /] [dup] swoncat make_generator
1 [dup 23 over / + 2 /] make_generator
define('gsra 1 swap [over / + 2 /] cons [dup] swoncat make_generator')
J('23 gsra')
Let's drive the generator a few time (with the x
combinator) and square the approximation to see how well it works...
J('23 gsra 6 [x popd] times first sqr')
From "Why Functional Programming Matters" by John Hughes:
The remainder of a square root finder is a function within, which takes a tolerance and a list of approximations and looks down the list for two successive approximations that differ by no more than the given tolerance.
(And note that by “list” he means a lazily-evaluated list.)
Using the output [a G]
of the above generator for square root approximations, and further assuming that the first term a has been generated already and epsilon ε is handy on the stack...
a [b G] ε within
---------------------- a b - abs ε <=
b
a [b G] ε within
---------------------- a b - abs ε >
b [c G] ε within
a [b G] ε [first - abs] dip <=
a [b G] first - abs ε <=
a b - abs ε <=
a-b abs ε <=
abs(a-b) ε <=
(abs(a-b)<=ε)
define('_within_P [first - abs] dip <=')
a [b G] ε roll< popop first
[b G] ε a popop first
[b G] first
b
define('_within_B roll< popop first')
a [b G] ε R0 [within] R1
x
combinator to generate next term from G
.within
with i
(it is a "tail-recursive" function.)Pretty straightforward:
a [b G] ε R0 [within] R1
a [b G] ε [popd x] dip [within] i
a [b G] popd x ε [within] i
[b G] x ε [within] i
b [c G] ε [within] i
b [c G] ε within
b [c G] ε within
define('_within_R [popd x] dip')
The recursive function we have defined so far needs a slight preamble: x
to prime the generator and the epsilon value to use:
[a G] x ε ...
a [b G] ε ...
define('within x 0.000000001 [_within_P] [_within_B] [_within_R] tailrec')
define('sqrt gsra within')
Try it out...
J('36 sqrt')
J('23 sqrt')
Check it.
4.795831523312719**2
from math import sqrt
sqrt(23)