Symbolic Evaluation with SymPy

In [1]:
import sympy

from joy.joy import run
from joy.library import UnaryBuiltinWrapper
from joy.utils.pretty_print import TracePrinter
from joy.utils.stack import list_to_stack

from notebook_preamble import D, J, V, define
In [2]:
sympy.init_printing()

SypPy Symbols

The SymPy package provides a powerful and elegant "thunk" object that can take the place of a numeric value in calculations and "record" the operations performed on it.

We can create some of these objects and put them on the Joy stack:

In [3]:
stack = list_to_stack(sympy.symbols('c a b'))

If we evaluate the quadratic program

over [[[neg] dupdip sqr 4] dipd * * - sqrt pm] dip 2 * [/] cons app2

The SypPy Symbols will become the symbolic expression of the math operations. Unfortunately, the library sqrt function doesn't work with the SymPy objects:

In [4]:
viewer = TracePrinter()
try:
    run('over [[[neg] dupdip sqr 4] dipd * * - sqrt pm] dip 2 * [/] cons app2', stack, D, viewer.viewer)
except Exception, e:
    print e
viewer.print_()
can't convert expression to float
                                            b a c . over [[[neg] dupdip sqr 4] dipd * * - sqrt pm] dip 2 * [/] cons app2
                                          b a c a . [[[neg] dupdip sqr 4] dipd * * - sqrt pm] dip 2 * [/] cons app2
b a c a [[[neg] dupdip sqr 4] dipd * * - sqrt pm] . dip 2 * [/] cons app2
                                            b a c . [[neg] dupdip sqr 4] dipd * * - sqrt pm a 2 * [/] cons app2
                       b a c [[neg] dupdip sqr 4] . dipd * * - sqrt pm a 2 * [/] cons app2
                                                b . [neg] dupdip sqr 4 a c * * - sqrt pm a 2 * [/] cons app2
                                          b [neg] . dupdip sqr 4 a c * * - sqrt pm a 2 * [/] cons app2
                                                b . neg b sqr 4 a c * * - sqrt pm a 2 * [/] cons app2
                                               -b . b sqr 4 a c * * - sqrt pm a 2 * [/] cons app2
                                             -b b . sqr 4 a c * * - sqrt pm a 2 * [/] cons app2
                                             -b b . dup mul 4 a c * * - sqrt pm a 2 * [/] cons app2
                                           -b b b . mul 4 a c * * - sqrt pm a 2 * [/] cons app2
                                          -b b**2 . 4 a c * * - sqrt pm a 2 * [/] cons app2
                                        -b b**2 4 . a c * * - sqrt pm a 2 * [/] cons app2
                                      -b b**2 4 a . c * * - sqrt pm a 2 * [/] cons app2
                                    -b b**2 4 a c . * * - sqrt pm a 2 * [/] cons app2
                                    -b b**2 4 a*c . * - sqrt pm a 2 * [/] cons app2
                                    -b b**2 4*a*c . - sqrt pm a 2 * [/] cons app2
                                 -b -4*a*c + b**2 . sqrt pm a 2 * [/] cons app2

We can pick out that first symbolic expression obect from the Joy stack:

In [5]:
S, E = viewer.history[-1]
In [6]:
q = S[0]
q
Out[6]:
$$- 4 a c + b^{2}$$

The Python math.sqrt() function causes the "can't convert expression to float" exception but sympy.sqrt() does not:

In [7]:
sympy.sqrt(q)
Out[7]:
$$\sqrt{- 4 a c + b^{2}}$$

Use sympy.sqrt

This is easy to fix.

In [8]:
D['sqrt'] = UnaryBuiltinWrapper(sympy.sqrt)

Now it works just fine.

In [9]:
(root1, (root2, _)) = run('over [[[neg] dupdip sqr 4] dipd * * - sqrt pm] dip 2 * [/] cons app2', stack, D)[0]
In [10]:
root1
Out[10]:
$$\frac{1}{2 a} \left(- b - \sqrt{- 4 a c + b^{2}}\right)$$
In [11]:
root2
Out[11]:
$$\frac{1}{2 a} \left(- b + \sqrt{- 4 a c + b^{2}}\right)$$

At some point I will probably make an optional library of Joy wrappers for SymPy functions, and either load it automatically if SymPy installation is available or have a CLI switch or something. There's a huge amount of incredibly useful stuff and I don't see why Joy shouldn't expose another interface for using it. (As an example, the symbolic expressions can be "lambdafied" into very fast versions, i.e. a function that takes a, b, and c and computes the value of the root using just low-level fast code, bypassing Joy and Python. Also, Numpy, &c.)

Partial Evaluation

Futamura projections

Starting with the example from Partial Computation of Programs by Yoshihiko Futamura of a function to compute u to the kth power:

In [12]:
def F(u, k):
    z = 1
    while k != 0:
        if odd(k):
            z = z * u
        k = k / 2
        u = u * u
    return z

Partial evaluation with k = 5:

In [13]:
def F5(u):
    z = 1 * u
    u = u * u
    u = u * u
    z = z * u
    return z

Translate F(u, k) to Joy

u k 1                    # z = 1
    [pop] [Fw] while     # the while statement
    popopd               # discard u k, "return" z

What's Fw?

u k z [pop odd] [Ft] [] ifte   # the if statement
      [2 //] dip               # k = k / 2  floordiv
      [sqr] dipd               # u = u * u

      [[sqr] dip 2 //] dip     # We can merge last two lines.

Helper function Ft (to compute z = z * u).

   u k z Ft
---------------
   u k u*z


Ft == [over] dip *

Putting it together:

Ft == [over] dip *
Fb == [[sqr] dip 2 //] dip
Fw == [pop odd] [Ft] [] ifte Fb
 F == 1 [pop] [Fw] while popopd
In [14]:
define('odd == 2 %')
In [15]:
define('Ft == [over] dip *')
In [16]:
define('Fb == [[sqr] dip 2 //] dip')
In [17]:
define('Fw == [pop odd] [Ft] [] ifte Fb')
In [18]:
define('F == 1 [pop] [Fw] while popopd')

Try it out:

In [19]:
J('2 5 F')
32

In order to elide the tests let's define special versions of while and ifte:

In [20]:
from joy.joy import joy
from joy.library import FunctionWrapper
from joy.parser import Symbol
from joy.utils.stack import concat


S_while = Symbol('while')


@FunctionWrapper
def while_(S, expression, dictionary):
    '''[if] [body] while'''
    (body, (if_, stack)) = S
    if joy(stack, if_, dictionary)[0][0]:
        expression = concat(body, (if_, (body, (S_while, expression))))
    return stack, expression, dictionary


@FunctionWrapper
def ifte(stack, expression, dictionary):
    '''[if] [then] [else] ifte'''
    (else_, (then, (if_, stack))) = stack
    if_res = joy(stack, if_, dictionary)[0][0]
    quote = then if if_res else else_
    expression = concat(quote, expression)
    return (stack, expression, dictionary)


D['ifte'] = ifte
D['while'] = while_

And with a SymPy symbol for the u argument:

In [21]:
stack = list_to_stack([5, sympy.symbols('u')])
viewer = TracePrinter()
try:
    (result, _) = run('F', stack, D, viewer.viewer)[0]
except Exception, e:
    print e
viewer.print_()
                         u 5 . F
                         u 5 . 1 [pop] [Fw] while popopd
                       u 5 1 . [pop] [Fw] while popopd
                 u 5 1 [pop] . [Fw] while popopd
            u 5 1 [pop] [Fw] . while popopd
                       u 5 1 . Fw [pop] [Fw] while popopd
                       u 5 1 . [pop odd] [Ft] [] ifte Fb [pop] [Fw] while popopd
             u 5 1 [pop odd] . [Ft] [] ifte Fb [pop] [Fw] while popopd
        u 5 1 [pop odd] [Ft] . [] ifte Fb [pop] [Fw] while popopd
     u 5 1 [pop odd] [Ft] [] . ifte Fb [pop] [Fw] while popopd
                       u 5 1 . Ft Fb [pop] [Fw] while popopd
                       u 5 1 . [over] dip * Fb [pop] [Fw] while popopd
                u 5 1 [over] . dip * Fb [pop] [Fw] while popopd
                         u 5 . over 1 * Fb [pop] [Fw] while popopd
                       u 5 u . 1 * Fb [pop] [Fw] while popopd
                     u 5 u 1 . * Fb [pop] [Fw] while popopd
                       u 5 u . Fb [pop] [Fw] while popopd
                       u 5 u . [[sqr] dip 2 //] dip [pop] [Fw] while popopd
      u 5 u [[sqr] dip 2 //] . dip [pop] [Fw] while popopd
                         u 5 . [sqr] dip 2 // u [pop] [Fw] while popopd
                   u 5 [sqr] . dip 2 // u [pop] [Fw] while popopd
                           u . sqr 5 2 // u [pop] [Fw] while popopd
                           u . dup mul 5 2 // u [pop] [Fw] while popopd
                         u u . mul 5 2 // u [pop] [Fw] while popopd
                        u**2 . 5 2 // u [pop] [Fw] while popopd
                      u**2 5 . 2 // u [pop] [Fw] while popopd
                    u**2 5 2 . // u [pop] [Fw] while popopd
                      u**2 2 . u [pop] [Fw] while popopd
                    u**2 2 u . [pop] [Fw] while popopd
              u**2 2 u [pop] . [Fw] while popopd
         u**2 2 u [pop] [Fw] . while popopd
                    u**2 2 u . Fw [pop] [Fw] while popopd
                    u**2 2 u . [pop odd] [Ft] [] ifte Fb [pop] [Fw] while popopd
          u**2 2 u [pop odd] . [Ft] [] ifte Fb [pop] [Fw] while popopd
     u**2 2 u [pop odd] [Ft] . [] ifte Fb [pop] [Fw] while popopd
  u**2 2 u [pop odd] [Ft] [] . ifte Fb [pop] [Fw] while popopd
                    u**2 2 u . Fb [pop] [Fw] while popopd
                    u**2 2 u . [[sqr] dip 2 //] dip [pop] [Fw] while popopd
   u**2 2 u [[sqr] dip 2 //] . dip [pop] [Fw] while popopd
                      u**2 2 . [sqr] dip 2 // u [pop] [Fw] while popopd
                u**2 2 [sqr] . dip 2 // u [pop] [Fw] while popopd
                        u**2 . sqr 2 2 // u [pop] [Fw] while popopd
                        u**2 . dup mul 2 2 // u [pop] [Fw] while popopd
                   u**2 u**2 . mul 2 2 // u [pop] [Fw] while popopd
                        u**4 . 2 2 // u [pop] [Fw] while popopd
                      u**4 2 . 2 // u [pop] [Fw] while popopd
                    u**4 2 2 . // u [pop] [Fw] while popopd
                      u**4 1 . u [pop] [Fw] while popopd
                    u**4 1 u . [pop] [Fw] while popopd
              u**4 1 u [pop] . [Fw] while popopd
         u**4 1 u [pop] [Fw] . while popopd
                    u**4 1 u . Fw [pop] [Fw] while popopd
                    u**4 1 u . [pop odd] [Ft] [] ifte Fb [pop] [Fw] while popopd
          u**4 1 u [pop odd] . [Ft] [] ifte Fb [pop] [Fw] while popopd
     u**4 1 u [pop odd] [Ft] . [] ifte Fb [pop] [Fw] while popopd
  u**4 1 u [pop odd] [Ft] [] . ifte Fb [pop] [Fw] while popopd
                    u**4 1 u . Ft Fb [pop] [Fw] while popopd
                    u**4 1 u . [over] dip * Fb [pop] [Fw] while popopd
             u**4 1 u [over] . dip * Fb [pop] [Fw] while popopd
                      u**4 1 . over u * Fb [pop] [Fw] while popopd
                 u**4 1 u**4 . u * Fb [pop] [Fw] while popopd
               u**4 1 u**4 u . * Fb [pop] [Fw] while popopd
                 u**4 1 u**5 . Fb [pop] [Fw] while popopd
                 u**4 1 u**5 . [[sqr] dip 2 //] dip [pop] [Fw] while popopd
u**4 1 u**5 [[sqr] dip 2 //] . dip [pop] [Fw] while popopd
                      u**4 1 . [sqr] dip 2 // u**5 [pop] [Fw] while popopd
                u**4 1 [sqr] . dip 2 // u**5 [pop] [Fw] while popopd
                        u**4 . sqr 1 2 // u**5 [pop] [Fw] while popopd
                        u**4 . dup mul 1 2 // u**5 [pop] [Fw] while popopd
                   u**4 u**4 . mul 1 2 // u**5 [pop] [Fw] while popopd
                        u**8 . 1 2 // u**5 [pop] [Fw] while popopd
                      u**8 1 . 2 // u**5 [pop] [Fw] while popopd
                    u**8 1 2 . // u**5 [pop] [Fw] while popopd
                      u**8 0 . u**5 [pop] [Fw] while popopd
                 u**8 0 u**5 . [pop] [Fw] while popopd
           u**8 0 u**5 [pop] . [Fw] while popopd
      u**8 0 u**5 [pop] [Fw] . while popopd
                 u**8 0 u**5 . popopd
                        u**5 . 
In [22]:
result
Out[22]:
$$u^{5}$$

Let's try partial evaluation by hand and use a "stronger" thunk.

Caret underscoring indicates terms that form thunks. When an arg is unavailable for a computation we just postpone it until the arg becomes available and in the meantime treat the pending computation as one unit.

                         u 5 . F
                         u 5 . 1 [pop] [Fw] while popopd
                       u 5 1 . [pop] [Fw] while popopd
                 u 5 1 [pop] . [Fw] while popopd
            u 5 1 [pop] [Fw] . while popopd
                       u 5 1 . Fw [pop] [Fw] while popopd
                       u 5 1 . [pop odd] [Ft] [] ifte Fb [pop] [Fw] while popopd
             u 5 1 [pop odd] . [Ft] [] ifte Fb [pop] [Fw] while popopd
        u 5 1 [pop odd] [Ft] . [] ifte Fb [pop] [Fw] while popopd
     u 5 1 [pop odd] [Ft] [] . ifte Fb [pop] [Fw] while popopd
                       u 5 1 . Ft Fb [pop] [Fw] while popopd
                       u 5 1 . [over] dip * Fb [pop] [Fw] while popopd
                u 5 1 [over] . dip * Fb [pop] [Fw] while popopd
                         u 5 . over 1 * Fb [pop] [Fw] while popopd
                       u 5 u . 1 * Fb [pop] [Fw] while popopd
                     u 5 u 1 . * Fb [pop] [Fw] while popopd
                       u 5 u . Fb [pop] [Fw] while popopd
                       u 5 u . [[sqr] dip 2 //] dip [pop] [Fw] while popopd
      u 5 u [[sqr] dip 2 //] . dip [pop] [Fw] while popopd
                         u 5 . [sqr] dip 2 // u [pop] [Fw] while popopd
                   u 5 [sqr] . dip 2 // u [pop] [Fw] while popopd
                           u . sqr 5 2 // u [pop] [Fw] while popopd
                           u . dup mul 5 2 // u [pop] [Fw] while popopd
                     u dup * . 5 2 // u [pop] [Fw] while popopd
                     ^^^^^^^
         u dup * 2 u [pop] [Fw] . while popopd
                    u dup * 2 u . Fw [pop] [Fw] while popopd
                    u dup * 2 u . [pop odd] [Ft] [] ifte Fb [pop] [Fw] while popopd
          u dup * 2 u [pop odd] . [Ft] [] ifte Fb [pop] [Fw] while popopd
     u dup * 2 u [pop odd] [Ft] . [] ifte Fb [pop] [Fw] while popopd
  u dup * 2 u [pop odd] [Ft] [] . ifte Fb [pop] [Fw] while popopd
                    u dup * 2 u . Fb [pop] [Fw] while popopd
                    u dup * 2 u . [[sqr] dip 2 //] dip [pop] [Fw] while popopd
   u dup * 2 u [[sqr] dip 2 //] . dip [pop] [Fw] while popopd
                      u dup * 2 . [sqr] dip 2 // u [pop] [Fw] while popopd
                u dup * 2 [sqr] . dip 2 // u [pop] [Fw] while popopd
                        u dup * . sqr 2 2 // u [pop] [Fw] while popopd
                        u dup * . dup mul 2 2 // u [pop] [Fw] while popopd
                  u dup * dup * . 2 2 // u [pop] [Fw] while popopd
                  ^^^^^^^^^^^^^

w/ K == u dup * dup *

             K 1 u [pop] [Fw] . while popopd
                        K 1 u . Fw [pop] [Fw] while popopd
                        K 1 u . [pop odd] [Ft] [] ifte Fb [pop] [Fw] while popopd
              K 1 u [pop odd] . [Ft] [] ifte Fb [pop] [Fw] while popopd
         K 1 u [pop odd] [Ft] . [] ifte Fb [pop] [Fw] while popopd
      K 1 u [pop odd] [Ft] [] . ifte Fb [pop] [Fw] while popopd
                        K 1 u . Ft Fb [pop] [Fw] while popopd
                        K 1 u . [over] dip * Fb [pop] [Fw] while popopd
                 K 1 u [over] . dip * Fb [pop] [Fw] while popopd
                          K 1 . over u * Fb [pop] [Fw] while popopd
                        K 1 K . u * Fb [pop] [Fw] while popopd
                      K 1 K u . * Fb [pop] [Fw] while popopd
                    K 1 K u * . Fb [pop] [Fw] while popopd
                        ^^^^^

w/ L == K u *

                     K 1 L . Fb [pop] [Fw] while popopd
                     K 1 L . [[sqr] dip 2 //] dip [pop] [Fw] while popopd
    K 1 L [[sqr] dip 2 //] . dip [pop] [Fw] while popopd
                       K 1 . [sqr] dip 2 // L [pop] [Fw] while popopd
                 K 1 [sqr] . dip 2 // L [pop] [Fw] while popopd
                         K . sqr 1 2 // L [pop] [Fw] while popopd
                         K . dup mul 1 2 // L [pop] [Fw] while popopd
                       K K . mul 1 2 // L [pop] [Fw] while popopd
                     K K * . 1 2 // L [pop] [Fw] while popopd
                     ^^^^^
                     K K * . 1 2 // L [pop] [Fw] while popopd
                   K K * 1 . 2 // L [pop] [Fw] while popopd
                 K K * 1 2 . // L [pop] [Fw] while popopd
                   K K * 0 . L [pop] [Fw] while popopd
                 K K * 0 L . [pop] [Fw] while popopd
           K K * 0 L [pop] . [Fw] while popopd
      K K * 0 L [pop] [Fw] . while popopd
      ^^^^^
                 K K * 0 L . popopd
                         L . 

So:

K == u dup * dup *
L == K u *

Our result "thunk" would be:

u dup * dup * u *

Mechanically, you could do:

u      dup * dup *  u   *
u u   [dup * dup *] dip *
u dup [dup * dup *] dip *


F5 == dup [dup * dup *] dip *

But we can swap the two arguments to the final * to get all mentions of u to the left:

u u dup * dup * *


Then de-duplicate "u":

u dup dup * dup * *


To arrive at a startlingly elegant form for F5:

F5 == dup dup * dup * *
In [23]:
stack = list_to_stack([sympy.symbols('u')])
viewer = TracePrinter()
try:
    (result, _) = run('dup dup * dup * *', stack, D, viewer.viewer)[0]
except Exception, e:
    print e
viewer.print_()
result
          u . dup dup * dup * *
        u u . dup * dup * *
      u u u . * dup * *
     u u**2 . dup * *
u u**2 u**2 . * *
     u u**4 . *
       u**5 . 
Out[23]:
$$u^{5}$$

I'm not sure how to implement these kinds of thunks. I think you have to have support in the interpreter, or you have to modify all of the functions like dup to check for thunks in their inputs.

Working on the compiler, from this:

dup dup * dup * *

We can already generate:

---------------------------------
(a0, stack) = stack
a1 = mul(a0, a0)
a2 = mul(a1, a1)
a3 = mul(a2, a0)
stack = (a3, stack)
---------------------------------

This is pretty old stuff... (E.g. from 1999, M. Anton Ertl Compilation of Stack-Based Languages he goes a lot further for Forth.)

In [ ]:

"A Transformation Based Approach to Semantics-Directed Code Generation"

by Arthur Nunes-Harwitt

https://dl.acm.org/citation.cfm?doid=2635648.2635652

In [24]:
def m(x, y): return x * y

print m(2, 3)
6
In [25]:
def m(x): return lambda y: x * y

print m(2)(3)
6
In [26]:
def m(x): return "lambda y: %(x)s * y" % locals()

print m(2)
print eval(m(2))(3)
lambda y: 2 * y
6

In Joy:

m == [*] cons

3 2 m i
3 2 [*] cons i
3 [2 *] i
3 2 *
6
In [27]:
def p(n, b): # original
    return 1 if n == 0 else b * p(n - 1, b)


def p(n): # curried
    return lambda b: 1 if n == 0 else b * p(n - 1, b)


def p(n): # quoted
    return "lambda b: 1 if %(n)s == 0 else b * p(%(n)s - 1, b)"  % locals()


print p(3)
lambda b: 1 if 3 == 0 else b * p(3 - 1, b)

Original

p == [0 =] [popop 1] [-- over] [dip *] genrec

b n p
b n [0 =] [popop 1] [-- over [p] dip *]

b n -- over [p] dip *
b n-1  over [p] dip *
b n-1 b [p] dip *
b n-1 p b *

curried, quoted

                    n p
---------------------------------------------
   [[n 0 =] [pop 1] [dup n --] [*] genrec]
In [28]:
def p(n): # lambda lowered
    return (
        lambda b: 1
        if n == 0 else
        lambda b: b * p(n - 1, b)
        )


def p(n): # lambda lowered quoted
    return (
        "lambda b: 1"
        if n == 0 else
        "lambda b: b * p(%(n)s - 1, b)"  % locals()
        )

print p(3)
lambda b: b * p(3 - 1, b)
p == [0 =] [[pop 1]] [ [-- [dup] dip p *] cons ]ifte


3 p
3 [-- [dup] dip p *] cons
[3 -- [dup] dip p *]
In [29]:
def p(n): # expression lifted
    if n == 0:
        return lambda b: 1
    f = p(n - 1)
    return lambda b: b * f(b)


print p(3)(2)
8
In [30]:
def p(n): # quoted
    if n == 0:
        return "lambda b: 1"
    f = p(n - 1)
    return "lambda b: b * (%(f)s)(b)"  % locals()

print p(3)
print eval(p(3))(2)
lambda b: b * (lambda b: b * (lambda b: b * (lambda b: 1)(b))(b))(b)
8
p == [0 =] [pop [pop 1]] [-- p [dupdip *] cons] ifte


3 p
3 -- p [dupdip *] cons
2    p [dupdip *] cons
2 -- p [dupdip *] cons [dupdip *] cons
1    p [dupdip *] cons [dupdip *] cons
1 -- p [dupdip *] cons [dupdip *] cons [dupdip *] cons
0    p [dupdip *] cons [dupdip *] cons [dupdip *] cons
0 pop [pop 1] [dupdip *] cons [dupdip *] cons [dupdip *] cons
[pop 1] [dupdip *] cons [dupdip *] cons [dupdip *] cons
...
[[[[pop 1] dupdip *] dupdip *] dupdip *]


2 [[[[pop 1] dupdip *] dupdip *] dupdip *] i
2  [[[pop 1] dupdip *] dupdip *] dupdip *
2   [[pop 1] dupdip *] dupdip *  2 *
2    [pop 1] dupdip *  2      *  2 *
2     pop 1  2      *  2      *  2 *
          1  2      *  2      *  2 *



p == [0 =] [pop [pop 1]] [--  p    [dupdip *] cons] ifte
p == [0 =] [pop [pop 1]] [-- [p] i [dupdip *] cons] ifte
p == [0 =] [pop [pop 1]] [--]   [i [dupdip *] cons] genrec
In [31]:
define('p == [0 =] [pop [pop 1]] [--] [i [dupdip *] cons] genrec')
In [32]:
J('3 p')
[[[[pop 1] dupdip *] dupdip *] dupdip *]
In [33]:
V('2 [[[[pop 1] dupdip *] dupdip *] dupdip *] i')
                                           . 2 [[[[pop 1] dupdip *] dupdip *] dupdip *] i
                                         2 . [[[[pop 1] dupdip *] dupdip *] dupdip *] i
2 [[[[pop 1] dupdip *] dupdip *] dupdip *] . i
                                         2 . [[[pop 1] dupdip *] dupdip *] dupdip *
           2 [[[pop 1] dupdip *] dupdip *] . dupdip *
                                         2 . [[pop 1] dupdip *] dupdip * 2 *
                      2 [[pop 1] dupdip *] . dupdip * 2 *
                                         2 . [pop 1] dupdip * 2 * 2 *
                                 2 [pop 1] . dupdip * 2 * 2 *
                                         2 . pop 1 2 * 2 * 2 *
                                           . 1 2 * 2 * 2 *
                                         1 . 2 * 2 * 2 *
                                       1 2 . * 2 * 2 *
                                         2 . 2 * 2 *
                                       2 2 . * 2 *
                                         4 . 2 *
                                       4 2 . *
                                         8 . 
In [ ]:
stack = list_to_stack([sympy.symbols('u')])
(result, s) = run('p i', stack, D)[0]
result

From this:

p == [0 =] [pop pop 1] [-- over] [dip *] genrec

To this:

p == [0 =] [pop [pop 1]] [--] [i [dupdip *] cons] genrec

Try it with F():

In [ ]:
def odd(n): return n % 2


def F(u, k):
    z = 1
    while k != 0:
        if odd(k):
            z = z * u
        k = k / 2
        u = u * u
    return z

F(2, 5)
In [ ]:
def F(k):
    def _F(u, k=k):
        z = 1
        while k != 0:
            if odd(k):
                z = z * u
            k = k / 2
            u = u * u
        return z
    return _F
    
F(5)(2)
In [ ]:
def F(k):
    def _F(u, k=k):
        if k == 0:
            z = 1
        else:
            z = F(k / 2)(u)
            z *= z
            if odd(k):
                z = z * u
        return z
    return _F
    
F(5)(2)
In [ ]:
def F(k):
    if k == 0:
        z = lambda u: 1
    else:
        f = F(k / 2)
        def z(u):
            uu = f(u)
            uu *= uu
            return uu * u if odd(k) else uu
    return z
    
F(5)(2)
In [ ]:
def F(k):
    if k == 0:
        z = lambda u: 1
    else:
        f = F(k / 2)
        if odd(k):
            z = lambda u: (lambda fu, u: fu * fu * u)(f(u), u)
        else:
            z = lambda u: (lambda fu, u: fu * fu)(f(u), u)
    return z
    
F(5)(2)
In [ ]:
def F(k):
    if k == 0:
        z = "lambda u: 1"
    else:
        f = F(k / 2)
        if odd(k):
            z = "lambda u: (lambda fu, u: fu * fu * u)((%(f)s)(u), u)" % locals()
        else:
            z = "lambda u: (lambda fu, u: fu * fu)((%(f)s)(u), u)" % locals()
    return z
    
source = F(5)
print source
eval(source)(2)

Hmm...

In [ ]:
for n in range(4):
    print F(n)
In [ ]:
def F(k):
    if k == 0:
        z = "lambda u: 1"
    elif k == 1:
        z = "lambda u: u"
    else:
        f = F(k / 2)
        if odd(k):
            z = "lambda u: (lambda fu, u: fu * fu * u)((%(f)s)(u), u)" % locals()
        else:
            z = "lambda u: (lambda fu, u: fu * fu)((%(f)s)(u), u)" % locals()
    return z
    
source = F(5)
print source
eval(source)(2)
In [ ]:
for n in range(4):
    print F(n)
In [ ]:
def F(k):
    if k == 0:
        z = "lambda u: 1"
    elif k == 1:
        z = "lambda u: u"
    else:
        m = k / 2
        if odd(k):
            if m == 0:
                z = "lambda u: 1"
            elif m == 1:
                z = "lambda u: u * u * u"
            else:
                z = "lambda u: (lambda fu, u: fu * fu * u)((%s)(u), u)" % F(m)
        else:
            if m == 0:
                z = "lambda u: 1"
            elif m == 1:
                z = "lambda u: u * u"
            else:
                z = "lambda u: (lambda u: u * u)((%s)(u))" % F(m)
    return z
    
source = F(5)
print source
eval(source)(2)
In [ ]:
def F(k):
    if k == 0:
        z = "lambda u: 1"
    elif k == 1:
        z = "lambda u: u"
    else:
        m = k / 2
        if m == 0:
            z = "lambda u: 1"
        
        elif odd(k):
            if m == 1:
                z = "lambda u: u * u * u"
            else:
                z = "lambda u: (lambda fu, u: fu * fu * u)((%s)(u), u)" % F(m)
        else:
            if m == 1:
                z = "lambda u: u * u"
            else:
                z = "lambda u: (lambda u: u * u)((%s)(u))" % F(m)
    return z
    
source = F(5)
print source
eval(source)(2)
In [ ]:
for n in range(7):
    source = F(n)
    print n, '%2i' % eval(source)(2), source

So that gets pretty good, eh?

But looking back at the definition in Joy, it doesn't seem easy to directly apply this technique to Joy code:

Ft == [over] dip *
Fb == [[sqr] dip 2 //] dip
Fw == [pop odd] [Ft] [] ifte Fb
 F == 1 [pop] [Fw] while popopd


But a direct translation of the Python code..?

F == [
  [[0 =] [pop 1]]
  [[1 =] []]
  [_F.0]
  ] cond

_F.0 == dup 2 // [
  [[0 =]     [pop 1]]
  [[pop odd] _F.1]
  [_F.2]
  ] cond

_F.1 == [1 =] [pop [dup dup * *]] [popd F [dupdip over * *] cons] ifte
_F.2 == [1 =] [pop [dup *]]       [popd F [i dup *]         cons] ifte


Try it:

5 F
5 [ [[0 =] [pop 1]] [[1 =] []] [_F.0] ] cond
5 _F.0
5 dup 2 // [ [[0 =] [pop 1]] [[pop odd] _F.1] [_F.2] ] cond
5 5 2 //   [ [[0 =] [pop 1]] [[pop odd] _F.1] [_F.2] ] cond

5 2 [ [[0 =] [pop 1]] [[pop odd] _F.1] [_F.2] ] cond
5 2 _F.1
5 2 [1 =] [popop [dup dup * *]] [popd F [dupdip over * *] cons] ifte
5 2                              popd F [dupdip over * *] cons
  2                                   F [dupdip over * *] cons

2 F [dupdip over * *] cons

2 F
2 [ [[0 =] [pop 1]] [[1 =] []] [_F.0] ] cond
2 _F.0
2 dup 2 // [ [[0 =] [pop 1]] [[pop odd] _F.1] [_F.2] ] cond
2 2 2 // [ [[0 =] [pop 1]] [[pop odd] _F.1] [_F.2] ] cond
2 1 [ [[0 =] [pop 1]] [[pop odd] _F.1] [_F.2] ] cond
2 1 _F.2
2 1 [1 =] [popop [dup *]] [popd F [i dup *] cons] ifte
2 1 popop [dup *]
[dup *]


2 F     [dupdip over * *] cons
[dup *] [dupdip over * *] cons
[[dup *] dupdip over * *]

And here it is in action:

2 [[dup *] dupdip over * *] i
2  [dup *] dupdip over * *
2   dup *  2      over * *
2   2   *  2      over * *
4          2      over * *
4          2      4    * *
4          8             *
32



So, it works, but in this case the results of the partial evaluation are more elegant.

Try it with hylomorphism():

In [ ]:
def hylomorphism(c, F, P, G):
    '''Return a hylomorphism function H.'''

    def H(a):
        if P(a):
            result = c
        else:
            b, aa = G(a)
            result = F(b, H(aa))
        return result

    return H

First, curry

With abuse of syntax:

In [ ]:
def hylomorphism(c):
    return lambda F: lambda P: lambda G: lambda a: (
        if P(a):
            result = c
        else:
            b, aa = G(a)
            result = F(b)(H(aa))
        return result
    )

lambda lowering

In [ ]:
def hylomorphism(c):
    def r(a):
        def rr(P):
            if P(a):
                return lambda F: lambda G: c
            return lambda F: lambda G: (
                    b, aa = G(a)
                    return F(b)(H(aa))
                )
        return rr
    return r

expression lifting

In [ ]:
def hylomorphism(c):
    def r(a):
        def rr(P):
            def rrr(G):
                if P(a):
                    return lambda F: c
                b, aa = G(a)
                H = hylomorphism(c)(aa)(P)(G)
                return lambda F: F(b)(H(F))
            return rrr
        return rr
    return r

quoted

In [ ]:
def hylomorphism(c):
    def r(a):
        def rr(P):
            def rrr(G):
                if P(a):
                    return "lambda F: %s" % (c,)
                b, aa = G(a)
                H = hylomorphism(c)(aa)(P)(G)
                return "lambda F: F(%(b)s)((%(H)s)(F))" % locals()
            return rrr
        return rr
    return r
In [ ]:
hylomorphism(0)(3)(lambda n: n == 0)(lambda n: (n-1, n-1))
In [ ]:
def F(a):
    def _F(b):
        print a, b
        return a + b
    return _F
In [ ]:
F(2)(3)
In [ ]:
eval(hylomorphism(0)(5)(lambda n: n == 0)(lambda n: (n-1, n-1)))(F)
In [ ]:
eval(hylomorphism([])(5)(lambda n: n == 0)(lambda n: (n-1, n-1)))(lambda a: lambda b: [a] + b)
In [ ]:

In [ ]:
hylomorphism(0)([1, 2, 3])(lambda n: not n)(lambda n: (n[0], n[1:]))
In [ ]:
hylomorphism([])([1, 2, 3])(lambda n: not n)(lambda n: (n[1:], n[1:]))
In [ ]:
eval(hylomorphism([])([1, 2, 3])(lambda n: not n)(lambda n: (n[1:], n[1:])))(lambda a: lambda b: [a] + b)
In [ ]:

In [ ]:

In [ ]:

In [ ]:
def hylomorphism(c):
    return lambda a: lambda P: (
        if P(a):
            result = lambda F: lambda G: c
        else:
            result = lambda F: lambda G: (
                b, aa = G(a)
                return F(b)(H(aa))
            )
        return result
    )
In [ ]:
def hylomorphism(c):
    return lambda a: (
        lambda F: lambda P: lambda G: c
        if P(a) else
        lambda F: lambda P: lambda G: (
            b, aa = G(a)
            return F(b)(H(aa))
        )
    )
In [ ]:
def hylomorphism(c):
    return lambda a: lambda G: (
        lambda F: lambda P: c
        if P(a) else
        b, aa = G(a)
        lambda F: lambda P: F(b)(H(aa))
    )